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We report all-electron variational and diffusion quantum Monte CarlosVMC and DMCd calculations for the
noble gas atoms He, Ne, Ar, Kr, and Xe. The calculations were performed using Slater-Jastrow wave functions
with Hartree-Fock single-particle orbitals. The quality of both the optimized Jastrow factors and the nodal
surfaces of the wave functions declines with increasing atomic numberZ, but the DMC calculations are
tractable and well behaved in all cases. We discuss the scaling of the computational cost of DMC calculations
with Z.
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I. INTRODUCTION

The variational quantum Monte CarlosVMCd method and
the more sophisticated diffusion quantum Monte Carlo
sDMCd method f1g can yield highly accurate energies for
many-electron systems. One of the main attractions of these
methods is that the cost of calculating the energy ofN quan-
tum particles scales roughly asN2−N3, which is better than
other many-body wave function techniques. However, al-
though the scaling with particle number is quite advanta-
geous, the cost increases rapidly with the atomic numberZ of
the atoms involved. Theoretical estimates of this scaling
f2,3g for DMC calculations have varied fromZ5.5 to Z6.5,
while a practical testf4g indicated a scaling of aboutZ5.2.

Numerous all-electron DMC studies have been reported
f5–17g for atoms up toZ=10, but very few have included
heavier atoms. DMC studies of heavier atoms have normally
used pseudopotentials to remove the chemically inert core
electrons from the problem. However, pseudopotentials in-
evitably introduce some errors and it may be useful to con-
sider how much progress can be made with all-electron
DMC calculations. Accurate all-electron calculations for at-
oms may also be useful in constructing pseudopotentials
which incorporate many-body effects. In this paper we report
VMC and DMC calculations for the noble gas atoms He, Ne,
Ar, Kr, and Xe, which extends the range of atoms studied
within VMC and DMC up toZ=54. The main aims of this
paper are to investigate how well current all-electron DMC
methods perform for heavy atoms and to study the scaling of
the computational cost withZ.

II. VMC AND DMC METHODS

In the VMC method the energy is calculated as the expec-
tation value of the Hamiltonian with an approximate many-
body trial wave function containing a number of variable
parameters. In the DMC method the estimate of the ground-
state energy is improved by performing an evolution of the
wave function in imaginary timef1g. The fermionic symme-
try is maintained by the fixed-node approximationf18g, in
which the nodal surface of the wave function is constrained
to equal that of a trial wave function. Our DMC algorithm is

essentially that of Umrigaret al. f9g, and we employ the
modifications to the Green function for all-electron calcula-
tions proposed in that paper. All of our VMC and DMC
calculations were performed using the CASINO codef19g.

Our trial wave functions were of the standard Slater-
Jastrow form

C = eJD↑D↓. s1d

The Jastrow factorseJ were chosen to be functions of the
variablesr ij = ur i −r ju and r i = ur iu, wherer i is the position of
electron i with respect to the nucleus. Our Jastrow factors
f20g for He, Ne, Ar, Kr, and Xe contained a total of 26, 75,
79, 80, and 54 adjustable parameters, respectivelyf21g. The
optimal parameter values were obtained by minimizing the
variance of the energy within a VMC proceduref22,23g. The
Slater determinantsDs were formed from single-particle or-
bitals obtained from Hartree-FocksHFd calculations usingsid
numerical integration on a radial grid andsii d Gaussian basis
sets and the CRYSTAL98 codef24g. Although the numerical
orbitals are the more accurate, they are not available for mo-
lecular systems, in which Gaussian basis sets are very com-
monly used.

In both the VMC and DMC methods the energy is calcu-
lated as an average over a set of electron configurations of

the local energy,EL=C−1ĤC, whereĤ is the Hamiltonian.
The presence of core electrons causes two related problems.
The first is that the shorter length scale variations in the wave
function near a nucleus of largeZ require the use of a small
time step. The second problem is that the fluctuations in the
local energy tend to be large near the nucleus, because both
the kinetic and potential energies are large. Although these
fluctuations can be reduced by optimizing the trial wave
function, in practice they are large for heavier atoms.

At a nucleus the exact wave function has a cuspf25g such
that the divergence in the potential energy is canceled by an
equal and opposite divergence in the kinetic energy. A deter-
minant of exact HF orbitals obeys the electron-nucleus cusp
condition. However, Gaussian functions are smooth, and a
determinant of such orbitals cannot have a cusp, so the local
energy diverges at the nucleus. In practice one finds wild
oscillations in the local energy close to the nucleus, which
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increase the variance of the energy in VMC calculations and
lead to time step errors and even numerical instabilities in
DMC calculations. To solve this problem we make small
corrections to the single-particle orbitals close to the nucleus,
which impose the correct cusp behaviorf26g.

III. RESULTS

A. Quality of the trial wave functions

The main results of our HF, VMC, and DMC calculations
are shown in Table I. Our HF energy for He with Gaussian
orbitals is very close to the result with the “exact” numerical
orbitals, indicating the high quality of the Gaussian basis set
used. For Ne the HF energy with Gaussian orbitals is a little
higher than the value with the numerical orbitals, although
this difference is not large enough to affect the DMC results.
We experimented with various Gaussian basis sets for the
heavier noble gas atoms and found that the basis set errors at
the HF level tend to increase significantly with atomic num-

ber. In the case of Xe our best Gaussian basis set gave an
error of 0.11 a.u. For Ar, Kr, and Xe we therefore used only
the numerical orbitals.

The exact ground-state wave function of a two-electron
atom is a nodeless function ofr1, r2, and r12, which is the
same form as our trial wave function for He. We therefore
expect to obtain a highly accurate trial wave function for He.
We refer to the difference in the HF and DMC energies as the
“DMC correlation energy.” If one keeps the orbitals fixed
and varies the Jastrow factor, then the lowest energy one
could obtain is the DMC energy. The percentage of the DMC
correlation energy retrieved at the VMC level is therefore a
measure of the quality of the Jastrow factor. From the data in
Table I we find that our VMC calculations retrieve 99.5%,
91%, 85%, 70%, and 59% of the DMC correlation energy for
He, Ne, Ar, Kr, and Xe, respectively. We believe that the
decrease in the quality of the Jastrow factor with increasing
Z arises from the increasing inhomogeneity of the atoms.
Creating accurate Jastrow factors for all-electron studies of
heavy atoms is a challenging problem.

Our VMC and DMC energies for Ne obtained with the
numerical orbitals are very close to those obtained in our
earlier workf20g. Huanget al. f13g obtained a VMC energy
of −128.9008s1d a.u., which is only slightly lower than our
value, although they also optimized the orbitals. Our DMC
energies for Ne are within error bars of those reported by
Umrigar et al. f9g, but the remaining fixed-node error of
0.016 a.u. is substantial.

From the data in Table I we observe that the percentages
of the correlation energy missing at the DMC level are 0%,
4%, 9%, 18% and 23% for He, Ne, Ar, Kr and Xe, respec-
tively. This indicates that the size of the fixed-node error
increases rapidly withZ.

B. Theoretical scaling with atomic number

It is of interest to study the CPU time required to obtain a
fixed standard error in the mean energy,D, as a function of
the atomic numberZ. The required CPU timeT can be writ-
ten as

T ~ MTC, s2d

whereM is the total number of generations of electron con-
figurations andTC is the CPU time for one move ofC con-
figurations, whereC is the average number of configurations
in a generation.

Ceperleyf3g showed thatD2 can be written as the sum of
two terms; the first corresponds to the square of the standard
error evaluated as if the DMC energies were uncorrelated,
and the second accounts for the effects of correlations. In
DMC calculations the time stept is normally chosen to be
small, and the correlations between configurations at succes-
sive generations are large, so that the second of these terms
dominates. Ceperley showed that this term is given approxi-
mately byf3g

TABLE I. Total energies of the noble gas atoms and the percent-
ages of the correlation energiesEc retrieved.sGd denotes a calcula-
tion with a Gaussian basis set andsNd denotes numerical orbitals.
The “exact” energies were obtained from data in the indicated
references.

Atom Method
Orb.
type

Total energy
sa.u.d Ec

HF G −2.86165214 0%

HF N −2.86168000 0%

VMC G −2.903499s8d 99.5%

He VMC N −2.903527s9d 99.5%

DMC G −2.903732s5d 100%

DMC N −2.903719s2d 100%

“Exact” f27g - −2.903724 100%

HF G −128.53832860 0%

HF N −128.54709811 0%

VMC G −128.8794s4d 85%

Ne VMC N −128.891s5d 88%

DMC G −128.9232s5d 96%

DMC N −128.9231s1d 96%

“Exact” f28g - −128.939 100%

HF N −526.81751277 0%

Ar VMC N −527.3817s2d 77%

DMC N −527.4840s2d 91%

“Exact” f29g - −527.55 100%

HF N −2752.05497715 0%

Kr VMC N −2753.2436s6d 57%

DMC N −2753.7427s6d 82%

“Exact” f30g - −2754.13 100%

HF N −7232.13836331 0%

Xe VMC N −7233.700s2d 46%

DMC N −7234.785s1d 77%

“Exact” f30g - −7235.57 100%
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D2 =
2uEVMC − EDMCu

tMC
. s3d

Since D2 is inversely proportional to the total number of
configurations, we obtain

T ~ t−1uEVMC − EDMCuTC. s4d

Ceperley used the simple approximationuEVMC −EDMCu
~Ec and the approximate scalingEc~Z1.5. He also argued
that avoiding large time step errors requirest~Z−2, as the
average distance diffused should be smaller than the size of
the 1s orbital, which is proportional toZ−1. Finally, he used
TC~Z2 to obtain an overall scaling of

T ~ Z5.5. s5d

Hammondet al. f2g argued along similar lines, although they
choseTC~Z3, leading to an overall scaling ofT~Z6.5. In
what follows we examine some aspects of these arguments.

C. Numerical tests of scaling with atomic number

Discussions of the actual scaling of the computational
cost of calculations with system size or atomic number are
fraught with difficulties. The results depend on the comput-
ers on which the calculations are run, the algorithms used,
and the details of the software used. Our calculations are run
on parallel computers in which each processor deals with a
small number of electronic configurationssone in the VMC
method and roughly ten in the DMC methodd. The interpro-
cessor communications are negligible in the VMC method
and small in the DMC method, and the computational cost is
inversely proportional to the number of processors used. All
of the DMC results used for determining the scaling of the
computational cost with atomic number were performed on
96 processors of a Sunfire Galaxy machine, although most of
the variance minimizations were performed on a cluster of
16 xeon dual processors.

To ensure that time step errors are small the DMC time
step should be chosen so that the probability of a move being
accepted is high. For the DMC results reported in Table I we
used time steps of 0.02, 0.0025, 0.0009, 0.00035, and
0.0002 a.u. for He, Ne, Ar, Kr, and Xe, respectively, which
were chosen so that in each case slightly more than 99% of
the proposed moves were accepted. These time steps scale as
Z−1.41, which is significantly weaker than theZ−2 scaling
used in the earlier theoretical estimatesf2,3g. We therefore
expect the time step bias in our DMC results to increase with
Z.

We thoroughly investigated the time step dependence of
the energies for He and Ne, concluding that they are negli-
gible compared with the statistical error bars given in Table I.
For each of Ar, Kr, and Xe we performed calculations at four
different time steps, and we estimate that the time step errors
in the corresponding DMC energies are less than 0.002 a.u.
sArd, 0.01 a.u.sKrd, and 0.015 a.u.sXed. It is likely that the
larger time step errors in our DMC results for the heavier
atoms arise both from the reduction in the quality of the trial
wave functions and the poorer sampling of the core elec-
trons.

The correlation energy is normally defined as the differ-
ence between the exact nonrelativistic ground-state energy
and the HF energy, assuming static point nuclei. Accurate
estimates of the correlation energies of neutral atoms forZ
=2–18 aregiven by Chakravorty and Davidsonf29g, while
Clementi and Hofmannf30g give values for Kr and Xe
which, while probably not as accurate as those for the lighter
atoms, are expected to be quite reliable. We will take these as
our reference data and refer to them as the “exact” correla-
tion energies and, when added to the Hartree-Fock energies,
the “exact” energies.

Figure 1 shows the correlation energy as a function ofZ
from our DMC data and the estimates of Chakravorty and
Davidsonf29g sZ=2–18d and Clementi and Hofmannf30g
sZ=36,54d. It is clear thatsapart from Hed DMC underesti-
mates the correlation energy and that the underestimation
becomes more severe at largerZ. The best power-law fit to
the “exact” data for the noble gas atoms givesEc~Z1.33,
while for our DMC data we obtainZ1.26. The scaling ofZ1.5

assumed in the earlier theoretical estimatesf2,3g is somewhat
of an overestimate.

As mentioned in Sec. III B, the quantity which actually
enters Ceperley’s approximation of Eq.s3d for the variance
of the DMC energy is the difference between the variational
and DMC energies,uEVMC −EDMCu. Using the VMC and
DMC data given in Table I we finduEVMC −EDMCu~Z2.62. The
reason that this quantity increases more rapidly withZ than
Ec is that the percentage of the correlation energy retrieved in
our VMC calculations decreases withZ more rapidly than in
our DMC calculations.

We can also test Eq.s3d directly by comparing the differ-
ence between the variational and DMC energiesuEVMC

TABLE II. The quantity 1/2tMCD2 and the difference be-
tween the VMC and DMC energies.

Atom 1/2tMCD2 sa.u.d uEVMC −EDMCu sa.u.d

He 0.00019 0.00019

Ne 0.024 0.032

Ar 0.11 0.10

Kr 0.66 0.50

Xe 1.3 1.0

FIG. 1. The correlation energyEc as a function of atomic num-
berZ. Crosses: “exact” values. Diamonds: DMC values. The dotted
line is a fit to the “exact” values givingEc~Z1.33, while the dashed
line is a fit to the DMC data givingEc~Z1.26.
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−EDMCu with the quantity1
2tMCD2. Serial correlation of the

data has been taken into account when computing the vari-
ance over the run. The results shown in Table II indicate that
the two quantities are in good agreement, which is rather
satisfactory considering the large range ofZ and the very
different qualities of trial wave functions used. The quantity
1
2tMCD2 is fitted by a scaling ofZ2.71.

We found that the computational cost of moving all the
electrons in a configuration scaled asZ1.35 in our DMC cal-
culations. This is rather better than the scalings assumed by
Ceperleyf3g sZ2d and by Hammondet al. f2g sZ3d. If we
studied a system containing many atoms, the scaling of the
computational cost for moving all the electrons in a configu-
ration would be expected to increase roughly asN2, although
the use of localized Wannier functions could reduce this toN
f31g.

Putting together our scalings for the factors in Eq.s4d we
find

T ~ Z1.413 Z2.623 Z1.35= Z5.38. s6d

We can now compare this with the actual DMC computa-
tions reported in Table I. In Fig. 2 we show the logarithm of
the CPU time as a function ofZ for a given standard error of
the mean. The best fit gives a scaling ofZ5.47, in good agree-

ment with the prediction ofZ5.38 from Eq. s4d.
As mentioned before, our DMC results for the heavier

atoms suffer from significant timestep errors. If we adopt the
Z−2 scaling for the time step instead of theZ−1.41 used above,
we obtain an overall scaling ofT~Z5.97, which is higher
than the value ofT~Z5.2 obtained in the practical tests of
Hammondet al. f4g. Moreover, it seems likely that an even
more rapid scaling would be required to achieve a time step
error independent ofZ.

IV. CONCLUSIONS

We have applied the VMC and DMC methods to noble
gas atoms up to XesZ=54d, using Slater-Jastrow wave func-
tions with Hartree-Fock single-particle orbitals. The percent-
age of the DMC correlation energy obtained at the VMC
level decreases withZ, indicating that the quality of our Ja-
strow factors decreases withZ. The percentage of the exact
correlation energy retrieved at the DMC level also decreases
with Z, indicating that the quality of the HF nodal surface
deteriorates with increasingZ.

Our study shows that Ceperley’s expressionf3g for the
variance of the DMC energyfEq. s3dg is accurate to better
than a factor of 2 for the systems studied here. The compu-
tational cost required to obtain a fixed statistical error bar in
the energy scaled asZ5.47, but in these calculations the time
step error increased significantly withZ. The scaling required
to achieve a time step error independent ofZ is difficult to
estimate, but it would certainly be higher thanZ5.47. How-
ever, it may well be reasonable to incur substantial time step
errors deep in the core of the atom when we calculate chemi-
cal properties which are related to the valence electrons.
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