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All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe
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We report all-electron variational and diffusion quantum Monte C&rldC and DMC) calculations for the
noble gas atoms He, Ne, Ar, Kr, and Xe. The calculations were performed using Slater-Jastrow wave functions
with Hartree-Fock single-particle orbitals. The quality of both the optimized Jastrow factors and the nodal
surfaces of the wave functions declines with increasing atomic nuibéut the DMC calculations are
tractable and well behaved in all cases. We discuss the scaling of the computational cost of DMC calculations
with Z.
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I. INTRODUCTION essentially that of Umrigaet al. [9], and we employ the
L modifications to the Green function for all-electron calcula-
The variational quantum Monte Carf¢MC) method and tions proposed in that paper. All of our VMC and DMC

the more SOph'St'CatEd. d|ffu§|on quantum Monte Carlocalculations were performed using the CASINO coiig].
(DMC) method[1] can yield highly accurate energies for Our trial wave functions were of the standard Slater-
many-electron systems. One of the main attractions of the353astrOW form

methods is that the cost of calculating the energil afuan-
tum particles scales roughly &—N3, which is better than ¥ =eD.D (1)
other many-body wave function techniques. However, al- TE e
though the scaling with particle number is quite advantarhe jastrow factors’ were chosen to be functions of the
geous, the cost increases rapl_dly Wlth_the atomic ngrﬁt&fr _ variablesrij:|ri—rj| andr;=|r;|, wherer, is the position of
the atoms involved. Theoretical estimates of this scalingyecironi with respect to the nucleus. Our Jastrow factors
[2,3] for DMC calculations have varied frord>® to Z°5, [20] for He, Ne, Ar, Kr, and Xe contained a total of 26, 75,
while a practical tesf4] indicated a scaling of abou®?. 79, 80, and 54 adjustable parameters, respecti@iy The
Numerous all-electron DMC studies have been reported)siima| parameter values were obtained by minimizing the
[5-17] for atoms up toZ=10, but very few have included \ariance of the energy within a VMC procediig2,23. The
heavier atoms. DMC studies of heavier atoms have normallg|ater determinant®, were formed from single-particle or-
used pseudopotentials to remove the chemically inert corgia|s obtained from Hartree-Fo¢klF) calculations usingi)
electrons from the problem. However, pseudopotentials ing merical integration on a radial grid afié) Gaussian basis
e_\/ltably introduce some errors and it may be_useful t0 CONgets and the CRYSTAL98 cod@4]. Although the numerical
sider how much progress can be made with all-electronpiais are the more accurate, they are not available for mo-
DMC calculations. Accurate all-electron calculations for at-|ocy1ar systems, in which Gaussian basis sets are very com-
oms may also be useful in constructing pseudopotentialﬁqomy used.
which incorporate many-body effects. In this paper we report |, "hoth the VMC and DMC methods the energy is calcu-
VMC and DMC calculations for the noble gas atoms He, N, 516 as an average over a set of electron configurations of
Ar, Kr, and Xe, which extends the range of atoms studie
within VMC and DMC up toZ=54. The main aims of this
paper are to investigate how well current all-electron DMC
methods perform for heavy atoms and to study the scaling o
the computational cost witQ.

Clhe local energyE, =WV HW¥, whereH is the Hamiltonian.
The presence of core electrons causes two related problems.
he first is that the shorter length scale variations in the wave
unction near a nucleus of largerequire the use of a small
time step. The second problem is that the fluctuations in the
local energy tend to be large near the nucleus, because both
the kinetic and potential energies are large. Although these
fluctuations can be reduced by optimizing the trial wave
In the VMC method the energy is calculated as the expecfunction, in practice they are large for heavier atoms.
tation value of the Hamiltonian with an approximate many- At a nucleus the exact wave function has a ci&fj such
body trial wave function containing a number of variable that the divergence in the potential energy is canceled by an
parameters. In the DMC method the estimate of the groundequal and opposite divergence in the kinetic energy. A deter-
state energy is improved by performing an evolution of theminant of exact HF orbitals obeys the electron-nucleus cusp
wave function in imaginary timgl]. The fermionic symme- condition. However, Gaussian functions are smooth, and a
try is maintained by the fixed-node approximatidk8], in  determinant of such orbitals cannot have a cusp, so the local
which the nodal surface of the wave function is constrainecenergy diverges at the nucleus. In practice one finds wild
to equal that of a trial wave function. Our DMC algorithm is oscillations in the local energy close to the nucleus, which

Il. VMC AND DMC METHODS
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TABLE I. Total energies of the noble gas atoms and the percentber. In the case of Xe our best Gaussian basis set gave an
ages of the correlation energigs retrieved.(G) denotes a calcula-  error of 0.11 a.u. For Ar, Kr, and Xe we therefore used only
tion with a Gaussian basis set af\d) denotes numerical orbitals. the numerical orbitals.

The “exact” energies were obtained from data in the indicated The exact ground-state wave function of a two-electron

references. atom is a nodeless function of, r,, andrq,, which is the
same form as our trial wave function for He. We therefore
Orb.  Total energy expect to obtain a highly accurate trial wave function for He.
Atom Method type (a.u) Ec We refer to the difference in the HF and DMC energies as the
HE G -2.86165214 0% “DZ/IC cprre:ﬁtiog etnergyf.” Itf onteh keetﬁs :he ortbitals fixed
B and varies the Jastrow factor, then the lowest energy one
V|:/|FC gl —j.:g;jggg)o 99 (;Z//o could obtain is the DMC energy. The percentage of the DMC
: 270 correlation energy retrieved at the VMC level is therefore a
He vMC N -2.90352P) 99.5%  measure of the quality of the Jastrow factor. From the data in
DMC G -2.90373%) 100% Table | we find that our VMC calculations retrieve 99.5%,
DMC N  -2.9037192) 100% 91%, 85%, 70%, and 59% of the DMC correlation energy for
“Exact” [27] . -2.903724 100% He, Ne, Ar, Kr, and Xe, respectively. We believe that the
HF G  -128.53832860 0% decrease in the quality of the Jastrow factor with increasing
HE N -128.54709811 0% Z arises from the increasing inhomogeneity of the atoms.
VMG G -128.87944) 85% Ereatlng accurate Jastrow factors for all-electron studies of
eavy atoms is a challenging problem.
Ne YMC N -128.8915) 88% Our VMC and DMC energies for Ne obtained with the
bMC G -128.92315) 96% numerical orbitals are very close to those obtained in our
DMC N -128.92311) 96% earlier work[20]. Huanget al.[13] obtained a VMC energy
“Exact” [28] - -128.939 100% of —128.90081) a.u., which is only slightly lower than our
HE N  -526.81751277 0% value, although they also optimized the orbitals. Our DMC
Ar VMC N  -527.38172) 77% energies for Ne are within error bars of those reported by
DMC N —527.48402) 91% Umrigar et_al. [9], buF the remaining fixed-node error of
“Exact” [29] ] 59755 100% 0.016 a.u. is subs_tantlal.
' From the data in Table | we observe that the percentages
HF N =2752.05497715 0% of the correlation energy missing at the DMC level are 0%,
Kr vMC N -2753.24366) 57% 4%, 9%, 18% and 23% for He, Ne, Ar, Kr and Xe, respec-
DMC N -2753.74276) 82% tively. This indicates that the size of the fixed-node error
“Exact” [30] - -2754.13 100% increases rapidly wittz.
HF N —7232.13836331 0%
Xe VMC N —-7233.7002) 46% ) ) . .
DMC N ~7234.7851) 7% B. Theoretical scaling with atomic number
“Exact” [30] - 728557 100% It is of interest to study the CPU time required to obtain a

fixed standard error in the mean enerdy,as a function of

) ) ) ) the atomic numbeZ. The required CPU tim& can be writ-
increase the variance of the energy in VMC calculations angls, 55

lead to time step errors and even numerical instabilities in
DMC calculations. To solve this problem we make small
corrections to the single-particle orbitals close to the nucleus,

which impose the correct cusp behavias]. T MTe, 2)

. RESULTS whereM is the total number of generations of electron con-
figurations andl: is the CPU time for one move & con-
figurations, whereC is the average number of configurations
The main results of our HF, VMC, and DMC calculations in a generation.
are shown in Table I. Our HF energy for He with Gaussian Ceperley[3] showed that\? can be written as the sum of
orbitals is very close to the result with the “exact” numerical two terms; the first corresponds to the square of the standard
orbitals, indicating the high quality of the Gaussian basis seérror evaluated as if the DMC energies were uncorrelated,
used. For Ne the HF energy with Gaussian orbitals is a littleand the second accounts for the effects of correlations. In
higher than the value with the numerical orbitals, althoughDMC calculations the time step is normally chosen to be
this difference is not large enough to affect the DMC resultssmall, and the correlations between configurations at succes-
We experimented with various Gaussian basis sets for thsive generations are large, so that the second of these terms
heavier noble gas atoms and found that the basis set errors@minates. Ceperley showed that this term is given approxi-
the HF level tend to increase significantly with atomic num-mately by[3]

A. Quality of the trial wave functions
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Since A? is inversely proportional to the total number of % s
configurations, we obtain %2_ .+";/// |
_ S e
T 7 Y|Eymc ~ EpmelTe- (4) £ e
o s
. . . £ IF L i
Ceperley used the simple approximatityyc ~Epwc| g Lo
«E. and the approximate scalirg,«Z*° He also argued LY
that avoiding large time step errors requiresZ 2, as the %020 30 40 50 60
average distance diffused should be smaller than the size of Atomic number Z

. o . -
the Is orbital, which is proportional t&™". Finally, he used FIG. 1. The correlation enerdy, as a function of atomic num-

2 . .
TcocZ* to obtain an overall scaling of berZ. Crosses: “exact” values. Diamonds: DMC values. The dotted
T oc 755, (5) line is a fit to the “exact” values giving.=Z>3 while the dashed
line is a fit to the DMC data givindg, > Z*26

Hammondet al.[2] argued along similar lines, although they i i : i
choseTc=Z3, leading to an overall scaling of=Z®5, In The correlation energy is normally defined as the differ-

what follows we examine some aspects of these argument§NCe between the exact nonrelativistic ground-state energy
and the HF energy, assuming static point nuclei. Accurate

estimates of the correlation energies of neutral atomsZfor
C. Numerical tests of scaling with atomic number =2-18 aregiven by Chakravorty and Davidsd29], while

Discussions of the actual scaling of the computationaClémenti and Hofmanri30] give values for Kr and Xe

cost of calculations with system size or atomic number aréNh'Ch’ while probably not as accurate as thos? for the lighter
atoms, are expected to be quite reliable. We will take these as

fraught with difficulties. The results depend on the comput- ur reference data and refer to them as the “exact’ correla-

ers on Wh'ch the calculations are run, the algorl_thms use(ﬁon energies and, when added to the Hartree-Fock energies,
and the details of the software used. Our calculations are I’U{P,Ie “exact’ energies

on parallel computers in which each processor deals with a Figure 1 shows the correlation energy as a functio of

small number of electronic configuratiofene in the VMC ,

method and roughly ten in the DMC methodhe interpro- fromdour [;'\élczdf‘tza ?nd thg glstlmatgs ogahe;kravortg and

cessor communications are negligible in the VMC methou]:)avI son| ].( =2-18 an ementi and Hofman}8 ].
§Z=36,54. It is clear that(apart from H¢ DMC underesti-

and small in the DMC method, and the computational cost i h lati d that th q S
inversely proportional to the number of processors used. Al ates the correlation energy and that the underestimation
ecomes more severe at largerThe best power-law fit to

of the DMC results used for determining the scaling of the g i . 133
computational cost with atomic number were performed orjhe "exact” data for the noble ga}Lszaatoms givEs<Z 15

96 processors of a Sunfire Galaxy machine, although most Hf'h'le for our DMC qlata we ol?tauz o The S(_:allng o "

the variance minimizations were performed on a cluster oiassumed n the earlier theoretical estimags] is somewhat
16 xeon dual processors. of an overestimate. . .

To ensure that time step errors are small the DMC time As mentloneq In Sec. .“l B.’ the quantity which qctually
step should be chosen so that the probability of a move bein nters Ceperley’s approxm_atlon of E@) for the variance
accepted is high. For the DMC results reported in Table | w f the DMC energy 1S the difference bt_atween the variational
used time steps of 0.02, 0.0025, 0.0009, 0.00035, anf"d DMC energies|Eyyc—Epuc|. Using the VMC and
0.0002 a.u. for He, Ne, Ar, Kr, and Xe, respectively, which MC data given in Table | we fmtEVMC_EDMd.MZ - The
were chosen so that in each case slightly more than 99% §fason that this quantity increases more rapidly \itthan

the proposed moves were accepted. These time steps scale §S that the pergentage of the correlation energy retrieyed in
7141 which is significantly weaker than thg2 scaling  °Ur VMC calculatl_ons decreases wizhmore rapidly than in
used in the earlier theoretical estimaf@s3]. We therefore Our PMC calculations.

expect the time step bias in our DMC results to increase with We can also test Ec(3_) djrectly by comparing the differ-
7 ence between the variational and DMC energjEgyc

We thoroughly investigated the time step dependence of TABLE IIl. The quantity 1/27MCA? and the difference be-
the energies for He and Ne, concluding that they are neglitween the VMC and DMC energies.
gible compared with the statistical error bars given in Table |

For each of Ar, Kr, and Xe we performed calculations at four  Atom 1/27MCAZ? (a.u) |Evmc —Epwmc| (a.u)
different time steps, and we estimate that the time step errors

in the corresponding DMC energies are less than 0.002 a.u. He 0.00019 0.00019
(Ar), 0.01 a.u(Kr), and 0.015 a.u(Xe). It is likely that the Ne 0.024 0.032
larger time step errors in our DMC results for the heavier  Ar 0.11 0.10
atoms arise both from the reduction in the quality of the trial Kr 0.66 0.50
wave functions and the poorer sampling of the core elec-  yq 1.3 1.0
trons.
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20 - - - - ment with the prediction 0Z>28 from Eq. (4).

As mentioned before, our DMC results for the heavier
= 15r & atoms suffer from significant timestep errors. If we adopt the
2l /X ] Z ? scaling for the time step instead of tAe'*' used above,
=t al we obtain an overall scaling of «Z5%7, which is higher
o st X ] than the value off «Z52 obtained in the practical tests of
=] e Hammondet al. [4]. Moreover, it seems likely that an even

oF Rl . more rapid scaling would be required to achieve a time step
x’/ error independent of.
3
In (Z)

IV. CONCLUSIONS

FIG. 2. The logarithm of the CPU time required to obtain a fixed We have applied the VMC and DMC methods to noble
error bar_in the energy vc_arsus(ﬂj f(_)r ourBMC calculatipns. The gas atoms up to X&=54), using Slater-Jastrow wave func-
?nzs:seu%:jn?n SSZ%V;'?] dt:e fited scaling F*". The CPU times are tions with Hartree-Fock single-particle orbitals. The percent-

' age of the DMC correlation energy obtained at the VMC
. . . ) level decreases wit, indicating that the quality of our Ja-
—Epuc| with the quantity; TMCAZ. Serial correlation of the  strow factors decreases with The percentage of the exact
data has been taken into account when computing the vargorrelation energy retrieved at the DMC level also decreases

ance over the run. The results shown in Table Il indicate thayyith z, indicating that the quality of the HF nodal surface
the two quantities are in good agreement, which is rathegeteriorates with increasirg

satisfactory considering the large range Zfand the very Our study shows that Ceperley’s express|@ for the
different qualities of trial wave functions used. The quantityyariance of the DMC energhEq. (3)] is accurate to better
%TMCA2 is fitted by a scaling oZ? "% than a factor of 2 for the systems studied here. The compu-

We found that the computational cost of moving all thetational cost required to obtain a fixed statistical error bar in
electrons in a configuration scaled Z5* in our DMC cal-  the energy scaled &%, but in these calculations the time
culations. This is rather better than the scalings assumed kitep error increased significantly with The scaling required
Ceperley[3] (z?) and by Hammonckt al. [2] (Z°). If we  to achieve a time step error independentZo difficult to
studied a system containing many atoms, the scaling of thestimate, but it would certainly be higher thZR*”. How-
computational cost for moving all the electrons in a configu-ever, it may well be reasonable to incur substantial time step
ration would be expected to increase roughlNasalthough  errors deep in the core of the atom when we calculate chemi-
the use of localized Wannier functions could reduce thiN to cal properties which are related to the valence electrons.
[31].
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